Functional Modules

    Basic description of cell adhesion[Edit]

    Cells interact with each other, and their substrate, throughout their lifetime. These interactions can be transient, such as at the immunological synapse, or they can be long-lived, such as at a neuromuscular junction. These complex cellular structures involve many proteins; from receptor molecules to structural scaffolding proteins. Significant differences in composition exist between an adhesion complex that interacts with the cellular substrate, or extracellular matrix, and one that interacts with another cell. Despite the differences however their fundamental function remains the same; to enable cellular communication through the generation and transduction of mechanical signals. While cell-cell adhesions serve as cellular ‘handshakes’, cell-matrix adhesions allow a cell to pull against its substrate to either measure the substrate rigidity, or to pull the cell forward. 

    Cell adhesions can be described as a functional extension of the actin cytoskeleton. Indeed, all adhesion types are linked physically to the actin filament network, and the dynamic processes of actin filament polymerization and disassembly are intertwined with the turnover and function of the adhesions complexes. Cell adhesions are mediated by either transmembrane cell-adhesion molecules (CAMs), which binding similar partner proteins on opposing cells, or adhesion receptors, which bind various ligands. These proteins are integral to the formation of adhesions and essentially link the intracellular space to the extracellular space to help relay information to the cell interior about the surroundings.

    References

      Updated on: Wed, 26 Feb 2014 10:55:13 GMT